Local ergodic theorems for noncommuting semigroups
نویسندگان
چکیده
منابع مشابه
Ergodic Theorems and Perturbations of Contraction Semigroups
We provide sufficient conditions for sums of two unbounded operators on a Banach space to be (pre-)generators of contraction semigroups. Necessary conditions and applications to positive semigroups on Banach lattices are also presented.
متن کاملResearch Article Nonlinear Mean Ergodic Theorems for Semigroups inHilbert Spaces
Let K be a nonempty subset of a Hilbert space , where K is not necessarily closed and convex. A family Γ= {T(t); t ≥ 0} of mappings T(t) is called a semigroup on K if (S1) T(t) is a mapping from K into itself for t ≥ 0, (S2) T(0)x = x and T(t+ s)x = T(t)T(s)x for x ∈ K and t,s≥ 0, (S3) for each x ∈ K , T(·)x is strongly measurable and bounded on every bounded subinterval of [0,∞). Let Γ be a se...
متن کاملMean Ergodic Theorems for C0 Semigroups of Continuous Linear Operators
In this paper we obtained mean ergodic theorems for semigroups of bounded linear or continuous affine linear operators on a Banach space under non-power bounded conditions. We then apply them to the wave equation and the system of elasticity to show that the mean of their solutions converges to their equilibriums.
متن کاملOn Noncommutative Weighted Local Ergodic Theorems
In the present paper we consider a von Neumann algebra M with a faithful normal semi-finite trace τ , and {αt} a strongly continuous extension to L(M, τ ) of a semigroup of absolute contractions on L(M, τ ). By means of a non-commutative Banach Principle we prove for a Besicovitch function b and x ∈ L(M, τ ), the averages 1 T Z T 0 b(t)αt(x)dt converge bilateral almost uniform in L(M, τ ) as T ...
متن کاملErgodic Theory for C-semigroups
We deene the ergodicity of C-semigroups in this paper, and then characterize the generators.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1980
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1980-0565341-3